
1

We make the figures from The Garbage Collection Handbook: The Art of Automatic Memory Man-
agement, Richard Jones, Antony Hosking, Eliot Moss (Chapman and Hall, Second edition, 2023)
available for fair use by educators and students. We ask that the following credit be given:

The Garbage Collection Handbook: The Art of Automatic Memory Management,
©2023 Richard Jones, Antony Hosking, Eliot Moss.

Chapter 1

Introduction

A B C

Figure 1.1: Premature deletion of an object may lead to errors. Here B has been
freed. The live object A now contains a dangling pointer. The space occupied by C
has leaked: C is not reachable but it cannot be freed.

3

4 CHAPTER 1. INTRODUCTION

0%	

20%	

40%	

60%	

80%	

100%	

1	
 10	
 100	
 1000	
 10000	

MMU	

BMU	

time (ms)

Figure 1.2: Minimum mutator utilisation and bounded mutator utilisation curves
display concisely the (minimum) fraction of time spent in the mutator, for any
given time window. MMU is the minimum mutator utilisation (y) in any time win-
dow (x) whereas BMU is the minimum mutator utilisation in that time window or
any larger one. In both cases, the x-intercept gives the maximum pause time and the
y-intercept is the overall fraction of processor time used by the mutator.

Roots
referencereference

object

fields

object

Figure 1.3: Roots, heap cells and references. Objects, denoted by rectangles, may be
divided into a number of fields, delineated by dashed lines. References are shown
as solid arrows.

Chapter 2

Mark-sweep garbage collection

5

6 CHAPTER 2. MARK-SWEEP GARBAGE COLLECTION

A B C

mark stack

Roots

Figure 2.1: Marking with the tricolour abstraction. Black objects and their children
have been processed by the collector. The collector knows of grey objects but has not
finished processing them. White objects have not yet been visited by the collector
(and some will never be).

mark stack

add()

remove()

prefetch()

FIFO

child

addr obj

Figure 2.2: Marking with a FIFO prefetch buffer. As usual, references are added to
the work list by being pushed onto the mark stack. However, to remove an item
from the work list, the oldest item is removed from the FIFO buffer and the entry
at the top of the stack is inserted into it. The object to which this entry refers is
prefetched so that it should be in the cache by the time this entry leaves the buffer.

Chapter 3

Mark-compact garbage collection

7

8 CHAPTER 3. MARK-COMPACT GARBAGE COLLECTION

high-water

mark

free scanA' A

Figure 3.1: Edwards’s Two-Finger algorithm. Live objects at the top of the heap
are moved into free gaps at the bottom of the heap. Here, the object at A has been
moved to A′. The algorithm terminates when the free and scan pointers meet.

N

A B C

in
fo

(a) Before threading: three objects refer to N

N

A B C

in
fo

(b) After threading: all pointers to N have been ‘threaded’ so that the objects that pre-
viously referred to N can now be found from N. The value previously stored in the
header word of N, which is now used to store the threading pointer, has been (tem-
porarily) moved to the first field (in A) that referred to N.

Figure 3.2: Threading pointers

9

Mark-bit vector

block (2)

offsetInBlock (3)

offsetInBlock

offse
t[blo

ck]

Offset vector

new

Heap(a!er)

0 2 3

old

0 1 2 3

Heap (before)

Figure 3.3: The heap (before and after compaction) and metadata used by Com-
pressor [Kermany and Petrank, 2006]. Bits in the mark bit vector indicate the start
and end of each live object. Words in the offset vector hold the address to which the
first live object that starts in their corresponding block will be moved. Forwarding
addresses are not stored but are calculated when needed from the offset and mark
bit vectors.

Chapter 4

Copying garbage collection

11

12 CHAPTER 4. COPYING GARBAGE COLLECTION

A B C D E

L

Fromspace

Tospace

(a) Fromspace after flip but before tracing

A B C D E

L

Fromspace

Tospace

freescan

L'

(b) Copy the root, L

A B C D E

L

Fromspace

Tospace

L' A' E'

freescan

(c) Scan L’s replica

Figure 4.1: Cheney copying garbage collection: an example

13

A B C D E

L

Fromspace

Tospace

C

L' A' E' B'

freescan

(d) Scan A’s replica, and so on. . .

A B C D E

L

Fromspace

Tospace

L' A' E' B' D'C'

freescan

(e) Scan C’s replica.

A B C D E

L

Fromspace

Tospace

L' A' E' B' D'C'

freescan

(f) Scan D’s replica. scan=free so collection is complete.

Figure 4.1 (continued): Cheney copying garbage collection: an example

14 CHAPTER 4. COPYING GARBAGE COLLECTION

1

2

4

8 9

5

10 11

3

6

12 13

7

1514

(a) The tree to copy

1 2 4 8 9 5 10 11 3 6 12 13 7 1514Depth-first

1 2 4 8 95 10 113 6 12 137 1514Breadth-first

1 2 4 8 9 5 10 113 6 12 13 7 1514Hierarchical decomposi on

1 2 4 895 10113 6 12137 15 14Online object reordering

(b) Placement of objects in the heap after copying

Figure 4.2: Copying a tree with different traversal orders. Each row shows how a
traversal order lays out objects in tospace, assuming that three objects can be placed
on a page (indicated by the thick borders). For online object reordering, prime num-
bered (bold italic) fields are considered to be hot.

scan partialScan free

page

Figure 4.3: Moon’s approximately depth-first copying. Each block represents a
page. As usual, scanned fields are black, and copied but not yet scanned ones are
grey. Free space is shown in white.

15

mark stack

add()

remove()

prefetch()

FIFO

child

addr obj

C Y Z

XS

Fromspace

Tospace

X YS Z C

Figure 4.4: A FIFO prefetch buffer (discussed in Chapter 2) does not improve local-
ity with copying as distant cousins (C, Y, Z), rather than parents and children, tend
to be placed together.

0

larger heaps smaller heaps

10.5
live ra o

m
a

rk
/c

o
n

s
(e

)

mark-sweep

semispace
copying

s

Figure 4.5: Mark/cons ratios for mark-sweep and copying collection (lower is bet-
ter)

Chapter 5

Reference counting

Figure 5.1: Deferred reference counting schematic, showing whether reference
counting operations on pointer loads or stores should be deferred or be performed
eagerly. The arrows indicate the source and target of pointers loaded or stored.

Copyrighted figure withheld

17

18 CHAPTER 5. REFERENCE COUNTING

A

X

Collector’s
log

DCB

Figure 5.2: Coalesced reference counting: if A was modified in the previous epoch,
for example by overwriting the reference to C with a reference to D, A’s reference
fields will have been copied to the log. The old referent C can be found in the
collector’s log and the most recent new referent D can be found directly from A.

19

candidates

A

Y Z

X
11 2

2 1

(a) Before markGrey.

candidates

A

Y Z

X
00 1

0 0

(b) After markGrey, all objects reachable from a candidate object have been marked
grey and the effect of references internal to this grey subgraph have been removed.
Note that X, which is still reachable, has a non-zero reference count.

candidates

A

Y Z

X
00 1

1 1

(c) After scan, all reachable objects are black and their reference counts have been
corrected to reflect live references.

Figure 5.3: Cyclic reference counting. The first field of each object is its reference
count.

Figure 5.4: The synchronous Recycler state transition diagram, showing mutator
and collector operations and the colours of objects

Copyrighted figure withheld

Chapter 6

Comparing garbage collectors

ρ ρ

A B

Figure 6.1: A simple cycle

21

available

a
ll
o
c
a
te
d

limitfree

(a) Before

n

available

a
ll
o
ca
te
d

a
ll
o
ca
te
d

limitfreeresult

alignment
padding

(b) After

Figure 7.1: Sequential allocation: a call to sequentialAllocate(n) which ad-
vances the free pointer by the size of the allocation request, n, plus any padding
necessary for proper alignment.

Chapter 7

Allocation

23

24 CHAPTER 7. ALLOCATION

type word

sync word

length (2)

element 0

element 1

word
offset

-3

-2

-1

0

1

object

reference

next object

(a) Array

type word

sync word

first field

second field

word
offset

-3

-2

-1

0

next object

(b) Scalar (non-Array)

type word

sync word

type word

sync word

word
offset

-3

-2

-1

0

first field

second field

third field

1

2

3

next object

reference

(c) No-Fields

Figure 7.2: A Java object header design for heap parsability. Grey indicates the
words forming the referent object. Neighbouring objects are shown with dashed
lines.

Chapter 8

Partitioning the heap

25

Chapter 9

Generational garbage collection

27

28 CHAPTER 9. GENERATIONAL GARBAGE COLLECTION

young

old

R

S

Q

P

V

N

U
remset

Figure 9.1: Inter-generational pointers. If live objects in the young generation are
to be preserved without tracing the whole heap, a mechanism and a data structure
are needed to remember objects S and U in the old generation that hold references
to objects in the young generation.

Figure 9.2: Survival rates with a copy count of 1 or 2. The curves show the fraction
of objects that will survive a future collection if they were born at time x. Curve (b)
shows the proportion that will survive one collection and curve (c) the proportion
that will survive two. The coloured areas show the proportions of objects that will
not be copied or will be promoted (copied) under different copy count regimes.

Copyrighted figure withheld

Figure 9.3: Shaw’s bucket brigade system. Objects are copied within the young
generation from a creation space to an aging semispace. By placing the aging semi-
space adjacent to the old generation at even numbered collections, objects can be
promoted to the old generation simply by moving the boundary between genera-
tions.

Copyrighted figure withheld

Figure 9.4: High water marks. Objects are copied from a fixed creation space to an
aging semispace within a younger generation and then promoted to an older gen-
eration. Although all survivors in an aging semispace are promoted, by adjusting a
‘high water mark’, we can choose to copy or promote an object in the creation space
simply through an address comparison.

Copyrighted figure withheld

29

old copy reserve free

equal equal

young

(a) Before a minor collection, the copy reserve must be at least as large as the young
generation.

old'old copy reserve young free

equal equal

(b) At a minor collection, survivors are copied into the copy reserve, extending the
old generation. The copy reserve and young generation are reduced but still of
equal size.

equal equal

copy reserveold'old

(c) After a minor collection and before a major collection. Only objects in the oldest
region, old, will be evacuated into the copy reserve. After the evacuation, all live old
objects can be moved to the beginning of the heap.

Figure 9.5: Appel’s simple generational collector. Grey areas are empty.

old copied

young

(a) Objects copied or marked

old copied

young

reserve

(b) Marked objects compacted

Figure 9.6: Switching between copying and marking the young generation. (a) The
copy reserve is full. Black objects from the young generation have been copied into
the old generation. Grey objects have been marked but not copied. All other new
objects are dead. (b) The compaction pass has slid the grey objects into the old
generation.

30 CHAPTER 9. GENERATIONAL GARBAGE COLLECTION

allocate

1jk

window

oldest youngest

steps

Figure 9.7: Renewal-Older-First garbage collection. At each collection, the objects
least recently collected are scavenged and survivors are placed after the youngest
objects.

allocate

window

oldest youngest

Figure 9.8: Deferred-Older-First garbage collection. A middle-aged window of the
heap is selected for collection. Survivors are placed after the survivors of the pre-
vious collection. The goal is that the collector will discover a sweet spot, where the
survival rate is very low and the window advances very slowly.

31

Figure 9.9: Beltway can be configured as any copying collector. Each figure shows
the increment used for allocation, the increment to be collected and the increment
to which survivors will be copied for each configuration.

Copyrighted figure withheld

Chapter 10

Other partitioned schemes

Figure 10.1: The Treadmill collector: objects are held on a double-linked list. Each of
the four segments holds objects of a different colour, so that the colour of an object
can be changed by ‘unsnapping’ it from one segment and ‘snapping’ it into another.
The pointers controlling the Treadmill are the same as for other incremental copying
collectors [Baker, 1978]: scanning is complete when scan meets T, and memory is
exhausted when free meets B.

Copyrighted figure withheld

33

34 CHAPTER 10. OTHER PARTITIONED SCHEMES

Figure 10.2: The Train copying collector
Copyrighted figure withheld

A B

(a) Before collecting the first car

B A

(b) Before collecting the next car

Figure 10.3: A ‘futile’ collection. After a collection which moves A to a fresh car,
the external reference is updated to refer to A rather than B. This presents the same
situation to the collector as before, so no progress can be made.

L OL

thread 1

L OL

thread 2

G

Figure 10.4: Thread-local heaplet organisation, indicating permitted pointer direc-
tions between purely local (L), optimistically-local (OL) and shared heaplets (G)
[Jones and King, 2005]

Figure 10.5: A continuum of tracing collectors. Spoonhower et al. contrast an evac-
uation threshold — sufficient live data to make a block a candidate for evacuation
— with an allocation threshold — the fraction of a block’s free space reused for allo-
cation.

Copyrighted figure withheld

Figure 10.6: Incremental incrementally compacting garbage collection. One space
(fromspace) is chosen for evacuation to an empty space (tospace), shown as grey;
the other spaces are collected in place. By advancing the two spaces, the whole heap
is eventually collected.

Copyrighted figure withheld

35

Figure 10.7: Allocation in immix, showing blocks of lines. Immix uses bump pointer
allocation within a partially empty block of small objects, advancing lineCursor
to lineLimit, before moving onto the next group of unmarked lines. It acquires
wholly empty blocks in which to bump-allocate medium-sized objects. Immix
marks both objects and lines. Because a small object may span two lines (but no
more), immix treats the line after any sequence of (explicitly) marked lines as im-
plicitly marked: the allocator will not use it.

Copyrighted figure withheld

Figure 10.8: Mark-Copy divides the space to be collected into blocks. After the
mark phase has constructed a remembered set of objects containing pointers that
span blocks, the blocks are evacuated and unmapped, one at a time.

Copyrighted figure withheld

Figure 10.9: Ulterior reference counting schematic: the heap is divided into a space
that is managed by reference counting and one that is not. The schematic shows
whether reference counting operations on pointer loads or stores should be per-
formed eagerly, deferred or ignored.

Copyrighted figure withheld

Chapter 11

Run-time interface

Figure 11.1: Conservative pointer finding. The two-level search tree, block header
and map of allocated blocks in the Boehm-Demers-Weiser conservative collector.

Copyrighted figure withheld

37

38 CHAPTER 11. RUN-TIME INTERFACE

GC happens

IP = g+36

r1 = r

r2 = t

g()

old IP: f+178

saved:

 1: 17

locals:

 2: r

 3: -7

 4: s

f()

old IP: main+52

saved:

 1: 784

 2: p

locals:

 3: -13

 4: q

main()

old IP: ...

saved:

 1: 155

locals:

 2: p

 3: 75

5

6

7

8

1

2

3

4

r1 = p

r2 = 784

r1 = r

r2 = 17

r1 = r

r2 = t

r1 = 155

r2 = 784

Restore

calleeSavedRegs

 〈r2, 1〉

@ g+36

Restore

 〈r2, t〉

Restore

 〈r1, r〉

 〈r2, 17〉

calleeSavedRegs

 〈r1, 2〉, 〈r2, 1〉

@ f+178

calleeSavedRegs

@ main+52

Restore

Regs

 r1 = p

 r2 = 784

Regs

 r1 = p

 r2 = 784

Regs

 r1 = r

 r2 = 17

Regs

 r1 = r

 r2 = t

(a) Stack scanning: walking from the top

Figure 11.2: Stack scanning

39

GC happens

IP = g+36

r1 = r'

r2 = t'

g()

old IP: f+178

saved:

 1: 17

locals:

 2: r'

 3: -7

 4: s'

f()

old IP: main+52

saved:

 1: 784

 2: p'

locals:

 3: -13

 4: q'

main()

old IP: ...

saved:

 1: 155

locals:

 2: p'

 3: 75

15

14

13

12

11

10

9

r1 = p

r2 = 784

r1 = r

r2 = 17

r1 = r

r2 = t

r1 = 155

r2 = 784

r1 = p'

r2 = 784

r1 = r'

r2 = 17

r1 = r'

r2 = t'

r1 = 155

r2 = 784

Restore

calleeSavedRegs

 〈r2, 1〉

@ g+36

Restore

 〈r2, t〉

Restore

 〈r1, r〉

 〈r2, 17〉

calleeSavedRegs

 〈r1, 2〉, 〈r2, 1〉

@ f+178

calleeSavedRegs

@ main+52

Restore

Done

Regs

 r1 = r

 r2 = 17

Done

 r1

Regs

 r1 = r'

 r2 = 17

pointerSlots: 2, 4

pointerRegs: r1

@ f+178

Done

 r1

Regs

 r1 = p'

 r2 = 784

Regs

 r1 = p

 r2 = 784

Done

pointerSlots: 2

pointerRegs: r1

@ main+52

pointerSlots: 2, 4

pointerRegs: r1, r2

@ g+36

Done

 r1

Regs

 r1 = r'

 r2 = t

Done

 r1

 r2

Regs

 r1 = r'

 r2 = t'

(b) Stack scanning: walking back to the top

Figure 11.2 (continued): Stack scanning

40 CHAPTER 11. RUN-TIME INTERFACE

dirty

102 words -1 card -2 cards 50 words

200 bytes408 bytes

card table

crossing map

Heap

scan

search

Figure 11.3: Crossing map with slot remembering card table. One card has been
dirtied (shown in black). The updated field is shown in grey. The crossing map
shows offsets (in words) to the last object in a card.

null

NEXT

PREV

NEXT

PREV

null

2
k
 b
y
te
s

ptr

Figure 11.4: A stack implemented as a chunked list. Shaded slots contain data. Each
chunk is aligned on a 2k byte boundary.

Chapter 12

Language-specific concerns

41

42 CHAPTER 12. LANGUAGE-SPECIFIC CONCERNS

open file’s
informa�on

0

1

2

3

63

..
.

Open File
Table

Opera�ng System

Garbage collected
applica�on

FileStream

int desc 3

...

Figure 12.1: Failure to release a resource: a FileStream object has become un-
reachable, but its file descriptor has not been closed.

open file’s
informa�on

0

1

2

3

63

..
.

Open File
Table

Opera�ng System

Garbage collected
applica�on

FileStream

int desc 3

...

Table of objects
that have finalisers

Method table

finalize(){

 if isOpen

 close(desc);

}

Figure 12.2: Using a finaliser to release a resource: here, an unreachable
FileStream object has a finaliser to close the descriptor.

43

Garbage collected
applica�on

FileStream

int desc 3

...

BufferedStream

file

buffer

...

StringBuffer

Method table

finalize(){

 if isOpen

 flush();

}

Figure 12.3: Object finalisation order. Unreachable BufferedStream and
FileStream objects, which must be finalised in that order.

A B

finaliser finaliser

(a) Original order

A B

finaliser B'

finaliser

(b) Refactored to handle cycles

Figure 12.4: Restructuring to force finalisation order in cyclic object graphs

Chapter 13

Concurrency preliminaries

45

Chapter 14

Parallel garbage collection

47

48 CHAPTER 14. PARALLEL GARBAGE COLLECTION

�me

(a) Stop-the-world collection, single thread

(b) Stop-the-world collection on multiprocessor, single collector thread

(c) Stop-the-world parallel collection

Figure 14.1: Stop-the-world collection: each bar represents an execution on a single
processor. The coloured regions represent different collection cycles.

A2

A3

A1

structure
for class A

B1

structure
for class B

C2

C1

structure
for class C

global
overflow

set

Figure 14.2: Global overflow set implemented as a list of lists [Flood et al., 2001].
The class structure for each Java class holds the head of a list of overflow objects of
that type, linked through the class pointer field in their header.

49

Threads

Packet pool

Figure 14.3: Grey packets. Each thread exchanges an empty packet for a packet of
references to trace. Marking fills an empty packet with new references to trace;
when it is full, the thread exchanges it with the global pool for another empty
packet.

Thread

stack 2

T0

X

Thread

stack 1

Y

Thread

stack 0

Figure 14.4: Dominant-thread tracing. Threads 0 to 2, coloured grey, white and
black, respectively, have traced a graph of objects. Each object is coloured to indicate
the processor to which it will be copied. The first field of each object is its header.
Thread T0 was the last to lock object X.

freescan

freescan

block

(a) Scan pointer and
free pointer in the
same chunk

freescan

freescan

. . .

. . .

chunk

A�er

Before

(b) Scan pointer and free pointer in different chunks

Figure 14.5: Chunk management in the Imai and Tick [1993] parallel copying col-
lector, showing selection of a scan block before (above) and after (below) overflow.
Hatching denotes blocks that have been added to the global pool.

50 CHAPTER 14. PARALLEL GARBAGE COLLECTION

freelist copy aliased

scanlist scan done

Figure 14.6: Block states and transitions in the Imai and Tick [1993] collector. Blocks
in states with thick borders are part of the global pool, those with thin borders are
owned by a thread.

scan
copy aliased or

(continue scanning) (continue scanning) scan→ done
copy→ aliased

aliased→ copy (continue scanning) scan→ done
scanlist→ scan scanlist→ scan
aliased→ copy (cannot happen) (cannot happen)
scanlist→ scan
aliased→ scan copy→ scanlist scan→ done
freelist→ copy freelist→ copy copy→ scan

freelist→ copy
aliased→ scan (cannot happen) (cannot happen)
freelist→ copy
aliased→ done (cannot happen) (cannot happen)
freelist→ copy
scanlist→ scan

Table 14.1: State transition logic for the Imai and Tick collector

Figure 14.7: Block states and transitions in the Siegwart and Hirzel collector. Blocks
in states with thick borders are part of the global pool, those with thin borders are
local to a thread. A thread may retain one block of the scanlist in its local cache.

Copyrighted figure withheld

Figure 14.8: State transition logic for the Siegwart and Hirzel collector.
Copyrighted figure withheld

51

3210 regions

Heap (before)

3210 regions Heap (a er)

Figure 14.9: Flood et al. [2001] divide the heap into one region per thread and alter-
nate the direction in which compacting threads slide live objects (shown in grey)

Heap (a�er)

1 2 3blocks0

Heap (before)

blocks0 1 2 3

Figure 14.10: Inter-block compaction. Rather than sliding object by object, Abua-
iadh et al. [2004] slide only complete blocks: free space within each block is not
squeezed out.

Figure 14.11: Intel Processor Graphics Gen11, showing a core processor, System-
on-a-Chip and its ring interconnect achitecture

Copyrighted figure withheld

Chapter 15

Concurrent garbage collection

53

54 CHAPTER 15. CONCURRENT GARBAGE COLLECTION

�me

(a) Incremental uniprocessor collection

(b) Incremental multiprocessor collection

(c) Parallel incremental collection

(d) Mostly-concurrent collection

(e) Mostly-concurrent incremental collection

(f) On-the-fly collection

(g) On-the-fly incremental collection

Figure 15.1: Incremental and concurrent garbage collection. Each bar represents an
execution on a single processor. The coloured regions represent different garbage
collection cycles.

55

Figure 15.2: The lost object problem: a reachable white object is hidden from the
collector by making it unreachable from any grey object.

Copyrighted figure withheld

GC phase A GC phase B

(a) Mostly-concurrent collection

GC phase A GC phase BGC phase I

(b) On-the-fly collection, type I

GC phase A GC phase BGC phase I₁ GC phase I₂

(c) On-the-fly collection, type II

Figure 15.3: Ragged phase changes

Chapter 16

Concurrent mark-sweep

57

58 CHAPTER 16. CONCURRENT MARK-SWEEP

Thread 1

stack
Thread 2

stack

Y

X

(a) The deletion barrier is ‘on’. Thread 1
has been scanned, but thread 2 has not. X
has been newly allocated black.

Thread 1

stack
Thread 2

stack

Y

X

(b) X is updated to point to Y; thread 2’s
reference to Y is removed. Neither action
triggers a deletion barrier.

Figure 16.1: On-the-fly collectors that allocate black need more than a deletion bar-
rier to prevent the scenario of a white object reachable only from a black object

Chapter 17

Concurrent copying and compaction

59

60 CHAPTER 17. CONCURRENT COPYING AND COMPACTION

LiveLiveLive Condemned Condemned

Roots

(a) Initial Compressor configuration. All pages are in fromspace.

LiveLiveLive Condemned Condemned

Roots

(b) Compute forwarding information, protect all tospace pages (illustrated by the dou-
ble horizontal bars). These include those reserved to hold evacuated objects and those
Live pages not condemned for evacuation. Then flip mutator roots to tospace. Muta-
tors accessing a protected tospace page will now trap.

LiveLiveLive Condemned Condemned

Roots

(c) Trapping on a Live page forwards pointers contained in that page to refer to their
tospace targets. Unprotect the Live page once all its stale fromspace references have
been replaced with tospace references.

LiveLiveLive Condemned Condemned

Roots

(d) Trapping on a reserved tospace page evacuates objects from fromspace pages to fill
the page. The fields of these objects are updated to point to tospace. Unprotect the
tospace page and unmap fully evacuated fromspace pages (releasing their physical
pages, shown as hatched).

LiveLiveLive

Roots

(e) Compaction is complete when all Live pages have been scanned to forward ref-
erences they contain, and all live objects in condemned pages have been copied into
tospace and the references they contain have been forwarded.

Figure 17.1: Compressor

61

063 20

aaaaaaaaaaaaaaaaaaaaa

41

pppppppppppppppppppppNSS

44

OOOOOOOOOOOOOOOOOOO

Figure 17.2: C4’s tagged pointer layout. The a bits are the address. The two SS bits
identify the space (generation) in which the object resides and N is the NMT bit.
The virtual address to which the pointer refers is indicated by the p (page number)
bits and the a bits (address within the page).

62 CHAPTER 17. CONCURRENT COPYING AND COMPACTION

LiveLiveLive Condemned Condemned

Roots

(a) Initial Pauseless configuration. All pages are in fromspace.

LiveLiveLive Condemned Condemned

Roots

(b) Compute forwarding information, protect all condemned fromspace pages (illus-
trated by the double horizontal bars), but leave tospace pages unprotected. These in-
clude those reserved to hold evacuated objects and those live pages not condemned
for evacuation.

LiveLiveLive Condemned Condemned

Roots

(c) Flip mutator roots to tospace, copying their targets, but leaving the references they
contain pointing to fromspace. Mutators accessing an object on a protected fromspace
page will trap and wait until the object is copied.

Condemned CondemnedLiveLiveLive

Roots

(d) Mutators loading a reference to a protected page will now trigger the LVB, copying
their targets.

LiveLiveLive

Roots

(e) Compaction is finished when all live objects in condemned pages have been copied
to tospace, and all tospace pages have been scanned to forward references they contain.

Figure 17.3: Pauseless

63

063 41

MMRF

46

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaOOOOOOOOOOOOOOOOOOOOOOO

(a) Non-generational tagged pointer layout. The F bit is used for concurrent mark-
ing through with finalisers, the R bit is the relocated bit, and the two MM bits are
mark bits.

063

OOOOrrFFmmMMRRRR

1557

aaaOOO

(b) Generational tagged pointer layout. The four R bits indicate the good colour
(only one of which is set at any time), the M and m bits are mark bits for the old
and young generations, respectively, the F bits are used for concurrent marking
through with finalisers and the two r bits indicate whether the field is tracked in a
remembered set.

Figure 17.4: ZGC tagged pointer layouts. The a bits are the address the pointer
holds (with 64-bit alignment, the three lower-order bits are 000).

Chapter 18

Concurrent reference counting

65

66 CHAPTER 18. CONCURRENT REFERENCE COUNTING

Thread 1 Write(o,i,x) Thread 2 Write(o,i,y)
addReference(x) addReference(y)
old ←o[i] old ←o[i]
deleteReference(old) deleteReference(old)
o[i]←x o[i]←y

Figure 18.1: Reference counting must synchronise the manipulation of counts with
pointer updates. Here, two threads race to update an object field. Note that old is
a local variable of each thread’s Write method.

Some thread’s
logB CD

Collector’s
log

A

X X

Figure 18.2: Concurrent coalesced reference counting: in the previous epoch A was
modified to point to C and the values of its reference fields logged. However, A has
been modified again in this epoch (to point to D), and so marked dirty and logged
again. The original referent B can be found in the collector’s global log, just as in
Figure 5.2. The reference to C that was added in the previous epoch will be in some
thread’s current log: this log can be found from A’s getLogPointer field.

Y

Z

X

X

L
o
g

Figure 18.3: Sliding views allow a fixed snapshot of the graph to be traced by using
values stored in the log. Here, the shaded objects indicate the state of the graph at
the time that the pointer from X to Y was overwritten to refer to Z. The old version
of the graph can be traced by using the value of X’s field stored in the log.

Chapter 19

Real-time garbage collection

�me

Figure 19.1: Unpredictable frequency and duration of conventional collectors. Col-
lector pauses in grey.

67

68 CHAPTER 19. REAL-TIME GARBAGE COLLECTION

tospace allocated copy stack

fromspace

free

free sharedStack

fromBot fromTop

toBot toTop

Figure 19.2: Heap structure in the Blelloch and Cheng work-based collector

�me

0.1ms1ms

Figure 19.3: Low mutator utilisation even with short collector pauses. The mutator
(white) runs infrequently, while the collector (grey) dominates.

tospace evacuated allocated

fromspace

free

bottom

scan

top

fromTop

toTop

fromBot

toBot

Figure 19.4: Heap structure in the Henriksson slack-based collector

Figure 19.5: Lazy evacuation in the Henriksson slack-based collector
Copyrighted figure withheld

�me

10ms

500µs

Figure 19.6: Metronome utilisation. Collector quanta are shown in grey and muta-
tor quanta in white.

69

0

10

20

30

40

50

60

70

80

90

100

100 200 300 400 500 600 7000

Time (ms)

U
�

li
sa

�
o

n
 (

%
)

Figure 19.7: Overall mutator utilisation in Metronome

Figure 19.8: Mutator utilisation in Metronome during a collection cycle
Copyrighted figure withheld

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

u T
(∆

t)

∆t

QT = 2.5

QT = 10

QT = 40

Figure 19.9: Minimum mutator utilisation uT(∆t) for a perfectly scheduled time-
based collector. CT = 10. Utilisation converges to QT

QT+CT
. Increasing the frequency

of the collector (reducing the mutator quantum) produces faster convergence.

70 CHAPTER 19. REAL-TIME GARBAGE COLLECTION

Figure 19.10: Fragmented allocation in Schism
Copyrighted figure withheld

Chapter 20

Energy-aware garbage collection

71

Chapter 21

Persistence and garbage collection

73

Bibliography

Diab Abuaiadh, Yoav Ossia, Erez Petrank and Uri Silbershtein. An efficient parallel heap com-
paction algorithm. In OOPSLA 2004, pages 224–236. doi: 10.1145/1028976.1028995. (page
51)

Andrew W. Appel. Simple generational garbage collection and fast allocation. Software: Practice
and Experience, 19(2):171–183, 1989. doi: 10.1002/spe.4380190206. (page 29)

Henry G. Baker. List processing in real-time on a serial computer. Communications of the ACM,
21(4):280–294, 1978. doi: 10.1145/359460.359470. Also AI Laboratory Working Paper 139,
1977. (page 33)

Jason Baker, Antonio Cunei, Filip Pizlo and Jan Vitek. Accurate garbage collection in uncoopera-
tive environments with lazy pointer stacks. In International Conference on Compiler Construction,
Braga, Portugal, March 2007. Volume 4420 of Lecture Notes in Computer Science, Springer-Verlag.
doi: 10.1007/978-3-540-71229-9_5.

Joel F. Bartlett. Compacting garbage collection with ambiguous roots. Lisp Pointers, 1(6):3–12, April
1988. doi: 10.1145/1317224.1317225.

Guy E. Blelloch and Perry Cheng. On bounding time and space for multiprocessor garbage collec-
tion. In PLDI 1999, pages 104–117. doi: 10.1145/301618.301648. (page 68)

CC 2005. 14th International Conference on Compiler Construction, Edinburgh, April 2005. Volume
3443 of Lecture Notes in Computer Science, Springer-Verlag. doi: 10.1007/b107108.

C.J. Cheney. A non-recursive list compacting algorithm. Communications of the ACM, 13(11):677–8,
November 1970. doi: 10.1145/362790.362798. (pages 12 and 13)

ECOOP 2007, Erik Ernst, editor. 21st European Conference on Object-Oriented Programming, Berlin,
Germany, July 2007. Volume 4609 of Lecture Notes in Computer Science, Springer-Verlag. doi: 10.
1007/978-3-540-73589-2.

Christine Flood, Dave Detlefs, Nir Shavit and Catherine Zhang. Parallel garbage collection for
shared memory multiprocessors. In JVM 2001. http://www.usenix.org/events/jvm01/
flood.html. (pages 48 and 51)

GC 1990, Eric Jul and Niels-Christian Juul, editors. OOPSLA/ECOOP Workshop on Garbage Col-
lection in Object-Oriented Systems, Ottawa, Canada, October 1990. doi: 10.1145/319016.
319042.

75

76 BIBLIOGRAPHY

GC 1991, Paul R. Wilson and Barry Hayes, editors. OOPSLA Workshop on Garbage Collection in
Object-Oriented Systems, October 1991. doi: 10.1145/143776.143792.

GC 1993, J. Eliot B. Moss, Paul R. Wilson and Benjamin Zorn, editors. OOPSLA Workshop on Garbage
Collection in Object-Oriented Systems, October 1993.

David Gries. An exercise in proving parallel programs correct. Communications of the ACM, 20(12):
921–930, December 1977. doi: 10.1145/359897.359903.

Roger Henriksson. Scheduling Garbage Collection in Embedded Systems. PhD thesis, Lund Insti-
tute of Technology, July 1998. https://lucris.lub.lu.se/ws/portalfiles/portal/
5860617/630830.pdf. (page 68)

Akira Imai and Evan Tick. Evaluation of parallel copying garbage collection on a shared-memory
multiprocessor. IEEE Transactions on Parallel and Distributed Systems, 4(9):1030–1040, 1993.
doi: 10.1109/71.243529. (pages 49 and 50)

ISMM 1998, Simon L. Peyton Jones and Richard Jones, editors. 1st ACM SIGPLAN International
Symposium on Memory Management, Vancouver, Canada, October 1998. ACM SIGPLAN Notices
34(3), ACM Press. doi: 10.1145/286860.

ISMM 2000, Craig Chambers and Antony L. Hosking, editors. 2nd ACM SIGPLAN International
Symposium on Memory Management, Minneapolis, MN, October 2000. ACM SIGPLAN Notices
36(1), ACM Press. doi: 10.1145/362422.

ISMM 2002, Hans-J. Boehm and David Detlefs, editors. 3rd ACM SIGPLAN International Symposium
on Memory Management, Berlin, Germany, June 2002. ACM SIGPLAN Notices 38(2 supplement),
ACM Press. doi: 10.1145/773146.

ISMM 2004, David F. Bacon and Amer Diwan, editors. 4th ACM SIGPLAN International Sympo-
sium on Memory Management, Vancouver, Canada, October 2004. ACM Press. doi: 10.1145/
1029873.

ISMM 2006, Erez Petrank and J. Eliot B. Moss, editors. 5th ACM SIGPLAN International Sympo-
sium on Memory Management, Ottawa, Canada, June 2006. ACM Press. doi: 10.1145/1133956.
(page 79)

ISMM 2007, Greg Morrisett and Mooly Sagiv, editors. 6th ACM SIGPLAN International Symposium
on Memory Management, Montréal, Canada, October 2007. ACM Press. doi: 10.1145/1296907.

ISMM 2008, Richard Jones and Steve Blackburn, editors. 7th ACM SIGPLAN International Sympo-
sium on Memory Management, Tucson, AZ, June 2008. ACM Press. doi: 10.1145/1375634.

ISMM 2009, Hillel Kolodner and Guy Steele, editors. 8th ACM SIGPLAN International Symposium
on Memory Management, Dublin, Ireland, June 2009. ACM Press. doi: 10.1145/1542431.

ISMM 2010, Jan Vitek and Doug Lea, editors. 9th ACM SIGPLAN International Symposium on Mem-
ory Management, Toronto, Canada, June 2010. ACM Press. doi: 10.1145/1806651.

ISMM 2011, Hans Boehm and David Bacon, editors. 10th ACM SIGPLAN International Symposium
on Memory Management, San Jose, CA, June 2011. ACM Press. doi: 10.1145/1993478.

BIBLIOGRAPHY 77

IWMM 1992, Yves Bekkers and Jacques Cohen, editors. International Workshop on Memory Manage-
ment, St Malo, France, 17–19 September 1992. Volume 637 of Lecture Notes in Computer Science,
Springer. doi: 10.1007/BFb0017181.

IWMM 1995, Henry G. Baker, editor. International Workshop on Memory Management, Kinross,
Scotland, 27–29 September 1995. Volume 986 of Lecture Notes in Computer Science, Springer.
doi: 10.1007/3-540-60368-9.

Richard E. Jones and Andy C. King. Collecting the garbage without blocking the traffic. Technical
Report 18–04, Computing Laboratory, University of Kent, September 2004. http://www.cs.
kent.ac.uk/pubs/2004/1970/. This report summarises King [2004]. (page 77)

Richard E. Jones and Andy C. King. A fast analysis for thread-local garbage collection with
dynamic class loading. In 5th IEEE International Workshop on Source Code Analysis and Ma-
nipulation (SCAM), Budapest, September 2005, pages 129–138. IEEE Computer Society Press.
doi: 10.1109/SCAM.2005.1. This is a shorter version of Jones and King [2004]. (page 34)

JVM 2001. 1st Java Virtual Machine Research and Technology Symposium, Monterey, CA, April 2001.
USENIX Association. https://www.usenix.org/legacy/event/jvm01/. (page 75)

Haim Kermany and Erez Petrank. The Compressor: Concurrent, incremental and parallel com-
paction. In PLDI 2006, pages 354–363. doi: 10.1145/1133981.1134023. (page 9)

Andy C. King. Removing Garbage Collector Synchronisation. PhD thesis, Computing Laboratory, The
University of Kent at Canterbury, 2004. http://www.cs.kent.ac.uk/pubs/2004/1981/.
(page 77)

LCTES 2003. ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded
Systems, San Diego, CA, June 2003. ACM SIGPLAN Notices 38(7), ACM Press. doi: 10.1145/
780732.

LFP 1984, Guy L. Steele, editor. ACM Conference on LISP and Functional Programming, Austin, TX,
August 1984. ACM Press. doi: 10.1145/800055. (page 77)

LFP 1992. ACM Conference on LISP and Functional Programming, San Francisco, CA, June 1992. ACM
Press. doi: 10.1145/141471.

David A. Moon. Garbage collection in a large LISP system. In LFP 1984, pages 235–245. doi: 10.
1145/800055.802040. (page 14)

OOPSLA 1999. ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, Denver, CO, October 1999. ACM SIGPLAN Notices 34(10), ACM Press. doi: 10.
1145/320384.

OOPSLA 2001. ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, Tampa, FL, November 2001. ACM SIGPLAN Notices 36(11), ACM Press. doi: 10.
1145/504282.

OOPSLA 2002. ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, Seattle, WA, November 2002. ACM SIGPLAN Notices 37(11), ACM Press. doi: 10.
1145/582419.

78 BIBLIOGRAPHY

OOPSLA 2003. ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, Anaheim, CA, November 2003. ACM SIGPLAN Notices 38(11), ACM Press.
doi: 10.1145/949305.

OOPSLA 2004. ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, Vancouver, Canada, October 2004. ACM SIGPLAN Notices 39(10), ACM Press.
doi: 10.1145/1028976. (page 75)

OOPSLA 2005. ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, San Diego, CA, October 2005. ACM SIGPLAN Notices 40(10), ACM Press. doi: 10.
1145/1094811.

PLDI 1988. ACM SIGPLAN Conference on Programming Language Design and Implementation, Atlanta,
June 1988. ACM SIGPLAN Notices 23(7), ACM Press. doi: 10.1145/53990.

PLDI 1991. ACM SIGPLAN Conference on Programming Language Design and Implementation,
Toronto, Canada, June 1991. ACM SIGPLAN Notices 26(6), ACM Press. doi: 10.1145/113445.

PLDI 1992. ACM SIGPLAN Conference on Programming Language Design and Implementation, San
Francisco, CA, June 1992. ACM SIGPLAN Notices 27(7), ACM Press. doi: 10.1145/143095.

PLDI 1993. ACM SIGPLAN Conference on Programming Language Design and Implementation, Albu-
querque, NM, June 1993. ACM SIGPLAN Notices 28(6), ACM Press. doi: 10.1145/155090.

PLDI 1997. ACM SIGPLAN Conference on Programming Language Design and Implementation, Las
Vegas, NV, June 1997. ACM SIGPLAN Notices 32(5), ACM Press. doi: 10.1145/258915.

PLDI 1999. ACM SIGPLAN Conference on Programming Language Design and Implementation, Atlanta,
GA, May 1999. ACM SIGPLAN Notices 34(5), ACM Press. doi: 10.1145/301618. (page 75)

PLDI 2000. ACM SIGPLAN Conference on Programming Language Design and Implementation, Van-
couver, Canada, June 2000. ACM SIGPLAN Notices 35(5), ACM Press. doi: 10.1145/349299.

PLDI 2001. ACM SIGPLAN Conference on Programming Language Design and Implementation, Snow-
bird, UT, June 2001. ACM SIGPLAN Notices 36(5), ACM Press. doi: 10.1145/378795.

PLDI 2002. ACM SIGPLAN Conference on Programming Language Design and Implementation, Berlin,
Germany, June 2002. ACM SIGPLAN Notices 37(5), ACM Press. doi: 10.1145/512529.

PLDI 2006, Michael I. Schwartzbach and Thomas Ball, editors. ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, Ottawa, Canada, June 2006. ACM SIGPLAN No-
tices 41(6), ACM Press. doi: 10.1145/1133981. (page 77)

PLDI 2008, Rajiv Gupta and Saman P. Amarasinghe, editors. ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, Tucson, AZ, June 2008. ACM SIGPLAN Notices
43(6), ACM Press. doi: 10.1145/1375581.

POPL 1994. 21st Annual ACM SIGPLAN Symposium on Principles of Programming Languages, Port-
land, OR, January 1994. ACM Press. doi: 10.1145/174675.

POPL 2003. 30th Annual ACM SIGPLAN Symposium on Principles of Programming Languages, New
Orleans, LA, January 2003. ACM SIGPLAN Notices 38(1), ACM Press. doi: 10.1145/604131.

BIBLIOGRAPHY 79

POS 1992, Antonio Albano and Ronald Morrison, editors. 5th International Workshop on Persistent
Object Systems (September, 1992), San Miniato, Italy, 1992. Workshops in Computing, Springer.
doi: 10.1007/978-1-4471-3209-7.

Robert A. Shaw. Empirical Analysis of a Lisp System. PhD thesis, Stanford University, 1988. Technical
Report CSL-TR-88-351. (page 28)

David Siegwart and Martin Hirzel. Improving locality with parallel hierarchical copying GC. In
ISMM 2006, pages 52–63. doi: 10.1145/1133956.1133964. (page 50)

Daniel Spoonhower, Guy Blelloch and Robert Harper. Using page residency to balance tradeoffs
in tracing garbage collection. In VEE 2005, pages 57–67. doi: 10.1145/1064979.1064989.
(page 34)

VEE 2005, Michael Hind and Jan Vitek, editors. 1st ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, Chicago, IL, June 2005. ACM Press. doi: 10.1145/1064979.
(page 79)

David S. Wise. Stop-and-copy and one-bit reference counting. Information Processing Letters, 46(5):
243–249, July 1993. doi: 10.1016/0020-0190(93)90103-G.

