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Chapter 1

Introduction

A B C

Figure 1.1: Premature deletion of an object may lead to errors. Here B has been
freed. The live object A now contains a dangling pointer. The space occupied by C
has leaked: C is not reachable but it cannot be freed.
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Figure 1.2: Minimum mutator utilisation and bounded mutator utilisation curves
display concisely the (minimum) fraction of time spent in the mutator, for any
given time window. MMU is the minimum mutator utilisation (y) in any time win-
dow (x) whereas BMU is the minimum mutator utilisation in that time window or
any larger one. In both cases, the x-intercept gives the maximum pause time and the
y-intercept is the overall fraction of processor time used by the mutator.
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Figure 1.3: Roots, heap cells and references. Objects, denoted by rectangles, may be
divided into a number of fields, delineated by dashed lines. References are shown
as solid arrows.
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Mark-sweep garbage collection
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A B C

mark stack

Roots

Figure 2.1: Marking with the tricolour abstraction. Black objects and their children
have been processed by the collector. The collector knows of grey objects but has not
finished processing them. White objects have not yet been visited by the collector
(and some will never be).

mark stack

add()

remove()

prefetch()

FIFO

child

addr obj

Figure 2.2: Marking with a FIFO prefetch buffer. As usual, references are added to
the work list by being pushed onto the mark stack. However, to remove an item
from the work list, the oldest item is removed from the FIFO buffer and the entry
at the top of the stack is inserted into it. The object to which this entry refers is
prefetched so that it should be in the cache by the time this entry leaves the buffer.
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high-water

mark

free scanA' A

Figure 3.1: Edwards’s Two-Finger algorithm. Live objects at the top of the heap
are moved into free gaps at the bottom of the heap. Here, the object at A has been
moved to A′. The algorithm terminates when the free and scan pointers meet.
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(a) Before threading: three objects refer to N
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(b) After threading: all pointers to N have been ‘threaded’ so that the objects that pre-
viously referred to N can now be found from N. The value previously stored in the
header word of N, which is now used to store the threading pointer, has been (tem-
porarily) moved to the first field (in A) that referred to N.

Figure 3.2: Threading pointers
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Figure 3.3: The heap (before and after compaction) and metadata used by Com-
pressor [Kermany and Petrank, 2006]. Bits in the mark bit vector indicate the start
and end of each live object. Words in the offset vector hold the address to which the
first live object that starts in their corresponding block will be moved. Forwarding
addresses are not stored but are calculated when needed from the offset and mark
bit vectors.
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Figure 4.1: Cheney copying garbage collection: an example
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(d) Scan A’s replica, and so on. . .
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(e) Scan C’s replica.
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(f) Scan D’s replica. scan=free so collection is complete.

Figure 4.1 (continued): Cheney copying garbage collection: an example
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(a) The tree to copy

1 2 4 8 9 5 10 11 3 6 12 13 7 1514Depth-first

1 2 4 8 95 10 113 6 12 137 1514Breadth-first

1 2 4 8 9 5 10 113 6 12 13 7 1514Hierarchical decomposi on

1 2 4 895 10113 6 12137 15 14Online object reordering

(b) Placement of objects in the heap after copying

Figure 4.2: Copying a tree with different traversal orders. Each row shows how a
traversal order lays out objects in tospace, assuming that three objects can be placed
on a page (indicated by the thick borders). For online object reordering, prime num-
bered (bold italic) fields are considered to be hot.

scan partialScan free

page

Figure 4.3: Moon’s approximately depth-first copying. Each block represents a
page. As usual, scanned fields are black, and copied but not yet scanned ones are
grey. Free space is shown in white.
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Figure 4.4: A FIFO prefetch buffer (discussed in Chapter 2) does not improve local-
ity with copying as distant cousins (C, Y, Z), rather than parents and children, tend
to be placed together.
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Figure 4.5: Mark/cons ratios for mark-sweep and copying collection (lower is bet-
ter)





Chapter 5

Reference counting

Figure 5.1: Deferred reference counting schematic, showing whether reference
counting operations on pointer loads or stores should be deferred or be performed
eagerly. The arrows indicate the source and target of pointers loaded or stored.

Copyrighted figure withheld
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A
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Collector’s
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DCB

Figure 5.2: Coalesced reference counting: if A was modified in the previous epoch,
for example by overwriting the reference to C with a reference to D, A’s reference
fields will have been copied to the log. The old referent C can be found in the
collector’s log and the most recent new referent D can be found directly from A.
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(a) Before markGrey.
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(b) After markGrey, all objects reachable from a candidate object have been marked
grey and the effect of references internal to this grey subgraph have been removed.
Note that X, which is still reachable, has a non-zero reference count.

candidates

A

Y Z

X
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(c) After scan, all reachable objects are black and their reference counts have been
corrected to reflect live references.

Figure 5.3: Cyclic reference counting. The first field of each object is its reference
count.

Figure 5.4: The synchronous Recycler state transition diagram, showing mutator
and collector operations and the colours of objects

Copyrighted figure withheld
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Comparing garbage collectors
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Figure 6.1: A simple cycle
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Figure 7.1: Sequential allocation: a call to sequentialAllocate(n) which ad-
vances the free pointer by the size of the allocation request, n, plus any padding
necessary for proper alignment.
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Figure 7.2: A Java object header design for heap parsability. Grey indicates the
words forming the referent object. Neighbouring objects are shown with dashed
lines.
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Partitioning the heap
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Figure 9.1: Inter-generational pointers. If live objects in the young generation are
to be preserved without tracing the whole heap, a mechanism and a data structure
are needed to remember objects S and U in the old generation that hold references
to objects in the young generation.

Figure 9.2: Survival rates with a copy count of 1 or 2. The curves show the fraction
of objects that will survive a future collection if they were born at time x. Curve (b)
shows the proportion that will survive one collection and curve (c) the proportion
that will survive two. The coloured areas show the proportions of objects that will
not be copied or will be promoted (copied) under different copy count regimes.

Copyrighted figure withheld

Figure 9.3: Shaw’s bucket brigade system. Objects are copied within the young
generation from a creation space to an aging semispace. By placing the aging semi-
space adjacent to the old generation at even numbered collections, objects can be
promoted to the old generation simply by moving the boundary between genera-
tions.

Copyrighted figure withheld

Figure 9.4: High water marks. Objects are copied from a fixed creation space to an
aging semispace within a younger generation and then promoted to an older gen-
eration. Although all survivors in an aging semispace are promoted, by adjusting a
‘high water mark’, we can choose to copy or promote an object in the creation space
simply through an address comparison.

Copyrighted figure withheld
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old copy reserve free

equal equal

young

(a) Before a minor collection, the copy reserve must be at least as large as the young
generation.

old'old copy reserve young free

equal equal

(b) At a minor collection, survivors are copied into the copy reserve, extending the
old generation. The copy reserve and young generation are reduced but still of
equal size.

equal equal

copy reserveold'old

(c) After a minor collection and before a major collection. Only objects in the oldest
region, old, will be evacuated into the copy reserve. After the evacuation, all live old
objects can be moved to the beginning of the heap.

Figure 9.5: Appel’s simple generational collector. Grey areas are empty.

old copied

young

(a) Objects copied or marked

old copied

young

reserve

(b) Marked objects compacted

Figure 9.6: Switching between copying and marking the young generation. (a) The
copy reserve is full. Black objects from the young generation have been copied into
the old generation. Grey objects have been marked but not copied. All other new
objects are dead. (b) The compaction pass has slid the grey objects into the old
generation.
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Figure 9.7: Renewal-Older-First garbage collection. At each collection, the objects
least recently collected are scavenged and survivors are placed after the youngest
objects.

allocate

window
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Figure 9.8: Deferred-Older-First garbage collection. A middle-aged window of the
heap is selected for collection. Survivors are placed after the survivors of the pre-
vious collection. The goal is that the collector will discover a sweet spot, where the
survival rate is very low and the window advances very slowly.
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Figure 9.9: Beltway can be configured as any copying collector. Each figure shows
the increment used for allocation, the increment to be collected and the increment
to which survivors will be copied for each configuration.

Copyrighted figure withheld





Chapter 10

Other partitioned schemes

Figure 10.1: The Treadmill collector: objects are held on a double-linked list. Each of
the four segments holds objects of a different colour, so that the colour of an object
can be changed by ‘unsnapping’ it from one segment and ‘snapping’ it into another.
The pointers controlling the Treadmill are the same as for other incremental copying
collectors [Baker, 1978]: scanning is complete when scan meets T, and memory is
exhausted when free meets B.

Copyrighted figure withheld
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Figure 10.2: The Train copying collector
Copyrighted figure withheld

A B

(a) Before collecting the first car

B A

(b) Before collecting the next car

Figure 10.3: A ‘futile’ collection. After a collection which moves A to a fresh car,
the external reference is updated to refer to A rather than B. This presents the same
situation to the collector as before, so no progress can be made.

L OL

thread 1

L OL

thread 2

G

Figure 10.4: Thread-local heaplet organisation, indicating permitted pointer direc-
tions between purely local (L), optimistically-local (OL) and shared heaplets (G)
[Jones and King, 2005]

Figure 10.5: A continuum of tracing collectors. Spoonhower et al. contrast an evac-
uation threshold — sufficient live data to make a block a candidate for evacuation
— with an allocation threshold — the fraction of a block’s free space reused for allo-
cation.

Copyrighted figure withheld

Figure 10.6: Incremental incrementally compacting garbage collection. One space
(fromspace) is chosen for evacuation to an empty space (tospace), shown as grey;
the other spaces are collected in place. By advancing the two spaces, the whole heap
is eventually collected.

Copyrighted figure withheld
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Figure 10.7: Allocation in immix, showing blocks of lines. Immix uses bump pointer
allocation within a partially empty block of small objects, advancing lineCursor
to lineLimit, before moving onto the next group of unmarked lines. It acquires
wholly empty blocks in which to bump-allocate medium-sized objects. Immix
marks both objects and lines. Because a small object may span two lines (but no
more), immix treats the line after any sequence of (explicitly) marked lines as im-
plicitly marked: the allocator will not use it.

Copyrighted figure withheld

Figure 10.8: Mark-Copy divides the space to be collected into blocks. After the
mark phase has constructed a remembered set of objects containing pointers that
span blocks, the blocks are evacuated and unmapped, one at a time.

Copyrighted figure withheld

Figure 10.9: Ulterior reference counting schematic: the heap is divided into a space
that is managed by reference counting and one that is not. The schematic shows
whether reference counting operations on pointer loads or stores should be per-
formed eagerly, deferred or ignored.

Copyrighted figure withheld





Chapter 11

Run-time interface

Figure 11.1: Conservative pointer finding. The two-level search tree, block header
and map of allocated blocks in the Boehm-Demers-Weiser conservative collector.

Copyrighted figure withheld
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(a) Stack scanning: walking from the top

Figure 11.2: Stack scanning
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Figure 11.2 (continued): Stack scanning
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Figure 11.3: Crossing map with slot remembering card table. One card has been
dirtied (shown in black). The updated field is shown in grey. The crossing map
shows offsets (in words) to the last object in a card.
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Figure 11.4: A stack implemented as a chunked list. Shaded slots contain data. Each
chunk is aligned on a 2k byte boundary.
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Figure 12.1: Failure to release a resource: a FileStream object has become un-
reachable, but its file descriptor has not been closed.
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Figure 12.2: Using a finaliser to release a resource: here, an unreachable
FileStream object has a finaliser to close the descriptor.
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Figure 12.3: Object finalisation order. Unreachable BufferedStream and
FileStream objects, which must be finalised in that order.
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Figure 12.4: Restructuring to force finalisation order in cyclic object graphs
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�me

(a) Stop-the-world collection, single thread

(b) Stop-the-world collection on multiprocessor, single collector thread

(c) Stop-the-world parallel collection

Figure 14.1: Stop-the-world collection: each bar represents an execution on a single
processor. The coloured regions represent different collection cycles.
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Figure 14.2: Global overflow set implemented as a list of lists [Flood et al., 2001].
The class structure for each Java class holds the head of a list of overflow objects of
that type, linked through the class pointer field in their header.
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Threads

Packet pool

Figure 14.3: Grey packets. Each thread exchanges an empty packet for a packet of
references to trace. Marking fills an empty packet with new references to trace;
when it is full, the thread exchanges it with the global pool for another empty
packet.

Thread

stack 2

T0

X

Thread

stack 1

Y

Thread

stack 0

Figure 14.4: Dominant-thread tracing. Threads 0 to 2, coloured grey, white and
black, respectively, have traced a graph of objects. Each object is coloured to indicate
the processor to which it will be copied. The first field of each object is its header.
Thread T0 was the last to lock object X.
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(a) Scan pointer and
free pointer in the
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. . .
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chunk
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(b) Scan pointer and free pointer in different chunks

Figure 14.5: Chunk management in the Imai and Tick [1993] parallel copying col-
lector, showing selection of a scan block before (above) and after (below) overflow.
Hatching denotes blocks that have been added to the global pool.
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freelist copy aliased

scanlist scan done

Figure 14.6: Block states and transitions in the Imai and Tick [1993] collector. Blocks
in states with thick borders are part of the global pool, those with thin borders are
owned by a thread.

scan
copy aliased or

(continue scanning) (continue scanning) scan→ done
copy→ aliased

aliased→ copy (continue scanning) scan→ done
scanlist→ scan scanlist→ scan
aliased→ copy (cannot happen) (cannot happen)
scanlist→ scan
aliased→ scan copy→ scanlist scan→ done
freelist→ copy freelist→ copy copy→ scan

freelist→ copy
aliased→ scan (cannot happen) (cannot happen)
freelist→ copy
aliased→ done (cannot happen) (cannot happen)
freelist→ copy
scanlist→ scan

Table 14.1: State transition logic for the Imai and Tick collector

Figure 14.7: Block states and transitions in the Siegwart and Hirzel collector. Blocks
in states with thick borders are part of the global pool, those with thin borders are
local to a thread. A thread may retain one block of the scanlist in its local cache.

Copyrighted figure withheld

Figure 14.8: State transition logic for the Siegwart and Hirzel collector.
Copyrighted figure withheld
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3210 regions

Heap (before)

3210 regions Heap (a er)

Figure 14.9: Flood et al. [2001] divide the heap into one region per thread and alter-
nate the direction in which compacting threads slide live objects (shown in grey)

Heap (a�er)

1 2 3blocks0

Heap (before)

blocks0 1 2 3

Figure 14.10: Inter-block compaction. Rather than sliding object by object, Abua-
iadh et al. [2004] slide only complete blocks: free space within each block is not
squeezed out.

Figure 14.11: Intel Processor Graphics Gen11, showing a core processor, System-
on-a-Chip and its ring interconnect achitecture
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�me

(a) Incremental uniprocessor collection

(b) Incremental multiprocessor collection

(c) Parallel incremental collection

(d) Mostly-concurrent collection

(e) Mostly-concurrent incremental collection

(f) On-the-fly collection

(g) On-the-fly incremental collection

Figure 15.1: Incremental and concurrent garbage collection. Each bar represents an
execution on a single processor. The coloured regions represent different garbage
collection cycles.
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Figure 15.2: The lost object problem: a reachable white object is hidden from the
collector by making it unreachable from any grey object.

Copyrighted figure withheld
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(a) Mostly-concurrent collection

GC phase A GC phase BGC phase I
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(c) On-the-fly collection, type II

Figure 15.3: Ragged phase changes
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Figure 16.1: On-the-fly collectors that allocate black need more than a deletion bar-
rier to prevent the scenario of a white object reachable only from a black object
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LiveLiveLive Condemned Condemned

Roots

(a) Initial Compressor configuration. All pages are in fromspace.

LiveLiveLive Condemned Condemned

Roots

(b) Compute forwarding information, protect all tospace pages (illustrated by the dou-
ble horizontal bars). These include those reserved to hold evacuated objects and those
Live pages not condemned for evacuation. Then flip mutator roots to tospace. Muta-
tors accessing a protected tospace page will now trap.

LiveLiveLive Condemned Condemned

Roots

(c) Trapping on a Live page forwards pointers contained in that page to refer to their
tospace targets. Unprotect the Live page once all its stale fromspace references have
been replaced with tospace references.

LiveLiveLive Condemned Condemned

Roots

(d) Trapping on a reserved tospace page evacuates objects from fromspace pages to fill
the page. The fields of these objects are updated to point to tospace. Unprotect the
tospace page and unmap fully evacuated fromspace pages (releasing their physical
pages, shown as hatched).

LiveLiveLive

Roots

(e) Compaction is complete when all Live pages have been scanned to forward ref-
erences they contain, and all live objects in condemned pages have been copied into
tospace and the references they contain have been forwarded.

Figure 17.1: Compressor
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Figure 17.2: C4’s tagged pointer layout. The a bits are the address. The two SS bits
identify the space (generation) in which the object resides and N is the NMT bit.
The virtual address to which the pointer refers is indicated by the p (page number)
bits and the a bits (address within the page).
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(a) Initial Pauseless configuration. All pages are in fromspace.
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Roots

(b) Compute forwarding information, protect all condemned fromspace pages (illus-
trated by the double horizontal bars), but leave tospace pages unprotected. These in-
clude those reserved to hold evacuated objects and those live pages not condemned
for evacuation.

LiveLiveLive Condemned Condemned

Roots

(c) Flip mutator roots to tospace, copying their targets, but leaving the references they
contain pointing to fromspace. Mutators accessing an object on a protected fromspace
page will trap and wait until the object is copied.

Condemned CondemnedLiveLiveLive

Roots

(d) Mutators loading a reference to a protected page will now trigger the LVB, copying
their targets.

LiveLiveLive

Roots

(e) Compaction is finished when all live objects in condemned pages have been copied
to tospace, and all tospace pages have been scanned to forward references they contain.

Figure 17.3: Pauseless
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(a) Non-generational tagged pointer layout. The F bit is used for concurrent mark-
ing through with finalisers, the R bit is the relocated bit, and the two MM bits are
mark bits.
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(b) Generational tagged pointer layout. The four R bits indicate the good colour
(only one of which is set at any time), the M and m bits are mark bits for the old
and young generations, respectively, the F bits are used for concurrent marking
through with finalisers and the two r bits indicate whether the field is tracked in a
remembered set.

Figure 17.4: ZGC tagged pointer layouts. The a bits are the address the pointer
holds (with 64-bit alignment, the three lower-order bits are 000).
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Thread 1 Write(o,i,x) Thread 2 Write(o,i,y)
addReference(x) addReference(y)
old ←o[i] old ←o[i]
deleteReference(old) deleteReference(old)
o[i]←x o[i]←y

Figure 18.1: Reference counting must synchronise the manipulation of counts with
pointer updates. Here, two threads race to update an object field. Note that old is
a local variable of each thread’s Write method.

Some thread’s
logB CD

Collector’s
log

A

X X

Figure 18.2: Concurrent coalesced reference counting: in the previous epoch A was
modified to point to C and the values of its reference fields logged. However, A has
been modified again in this epoch (to point to D), and so marked dirty and logged
again. The original referent B can be found in the collector’s global log, just as in
Figure 5.2. The reference to C that was added in the previous epoch will be in some
thread’s current log: this log can be found from A’s getLogPointer field.

Y

Z

X

X

L
o
g

Figure 18.3: Sliding views allow a fixed snapshot of the graph to be traced by using
values stored in the log. Here, the shaded objects indicate the state of the graph at
the time that the pointer from X to Y was overwritten to refer to Z. The old version
of the graph can be traced by using the value of X’s field stored in the log.
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�me

Figure 19.1: Unpredictable frequency and duration of conventional collectors. Col-
lector pauses in grey.
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tospace allocated copy stack

fromspace

free

free sharedStack

fromBot fromTop

toBot toTop

Figure 19.2: Heap structure in the Blelloch and Cheng work-based collector

�me

0.1ms1ms

Figure 19.3: Low mutator utilisation even with short collector pauses. The mutator
(white) runs infrequently, while the collector (grey) dominates.
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top
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Figure 19.4: Heap structure in the Henriksson slack-based collector

Figure 19.5: Lazy evacuation in the Henriksson slack-based collector
Copyrighted figure withheld
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Figure 19.6: Metronome utilisation. Collector quanta are shown in grey and muta-
tor quanta in white.
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Figure 19.7: Overall mutator utilisation in Metronome

Figure 19.8: Mutator utilisation in Metronome during a collection cycle
Copyrighted figure withheld
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Figure 19.9: Minimum mutator utilisation uT(∆t) for a perfectly scheduled time-
based collector. CT = 10. Utilisation converges to QT

QT+CT
. Increasing the frequency

of the collector (reducing the mutator quantum) produces faster convergence.
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Figure 19.10: Fragmented allocation in Schism
Copyrighted figure withheld
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